Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.770
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583435

RESUMO

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Receptores de Dopamina D3 , Acetato de Desoxicorticosterona/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Ratos Endogâmicos SHR , Hipertensão/induzido quimicamente , Endotelinas/farmacologia , Água , Acetatos/farmacologia , Pressão Sanguínea , Endotelina-1
2.
Planta ; 259(6): 129, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639804

RESUMO

MAIN CONCLUSION: IAA cooperates with JA to inhibit SA and negatively regulates rose black spot disease resistance. Black spot disease caused by the fungus Marssonina rosae is the most prevalent and severe ailment in rose cultivation, leading to the appearance of black spots on leaves and eventual leaf fall, significantly impacting the utilization of roses in gardens. Salicylic acid (SA) and jasmonic acid (JA) are pivotal hormones that collaborate with indole-3 acetic acid (IAA) in regulating plant defense responses; however, the detailed mechanisms underlying the induction of black spot disease resistance by IAA, JA, and SA remain unclear. In this study, transcript analysis was conducted on resistant (R13-54) and susceptible (R12-26) lines following M. rosae infection. In addition, the impact of exogenous interference with IAA on SA- and JA-mediated disease resistance was examined. The continuous accumulation of JA, in synergy with IAA, inhibited activation of the SA signaling pathway in the early infection stage, thereby negatively regulating the induction of effective resistance to black spot disease. IAA administration alleviated the inhibition of SA on JA to negatively regulate the resistance of susceptible strains by further enhancing the synthesis and accumulation of JA. However, IAA did not contribute to the negative regulation of black spot resistance when high levels of JA were inhibited. Virus-induced gene silencing of RcTIFY10A, an inhibitor of the JA signaling pathway, further suggested that IAA upregulation led to a decrease in disease resistance, a phenomenon not observed when the JA signal was inhibited. Collectively, these findings indicate that the IAA-mediated negative regulation of black spot disease resistance relies on activation of the JA signaling pathway.


Assuntos
Resistência à Doença , Ácido Salicílico , Ácido Salicílico/metabolismo , Resistência à Doença/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais , Acetatos/farmacologia , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
3.
J Neuroinflammation ; 21(1): 101, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632579

RESUMO

BACKGROUND: Increased neuroinflammation in brain regions regulating sympathetic nerves is associated with hypertension. Emerging evidence from both human and animal studies suggests a link between hypertension and gut microbiota, as well as microbiota-derived metabolites short-chain fatty acids (SCFAs). However, the precise mechanisms underlying this gut-brain axis remain unclear. METHODS: The levels of microbiota-derived SCFAs in spontaneously hypertensive rats (SHRs) were determined by gas chromatography-mass spectrometry. To observe the effect of acetate on arterial blood pressure (ABP) in rats, sodium acetate was supplemented via drinking water for continuous 7 days. ABP was recorded by radio telemetry. The inflammatory factors, morphology of microglia and astrocytes in rostral ventrolateral medulla (RVLM) were detected. In addition, blood-brain barrier (BBB) permeability, composition and metabolomics of the gut microbiome, and intestinal pathological manifestations were also measured. RESULTS: The serum acetate levels in SHRs are lower than in normotensive control rats. Supplementation with acetate reduces ABP, inhibits sympathetic nerve activity in SHRs. Furthermore, acetate suppresses RVLM neuroinflammation in SHRs, increases microglia and astrocyte morphologic complexity, decreases BBB permeability, modulates intestinal flora, increases fecal flora metabolites, and inhibits intestinal fibrosis. CONCLUSIONS: Microbiota-derived acetate exerts antihypertensive effects by modulating microglia and astrocytes and inhibiting neuroinflammation and sympathetic output.


Assuntos
Hipertensão , Microbiota , Humanos , Ratos , Animais , Ratos Endogâmicos SHR , Doenças Neuroinflamatórias , Hipertensão/metabolismo , Pressão Sanguínea , Bulbo/metabolismo , Acetatos/farmacologia
4.
Nat Cell Biol ; 26(4): 613-627, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429478

RESUMO

The ability of tumour cells to thrive in harsh microenvironments depends on the utilization of nutrients available in the milieu. Here we show that pancreatic cancer-associated fibroblasts (CAFs) regulate tumour cell metabolism through the secretion of acetate, which can be blocked by silencing ATP citrate lyase (ACLY) in CAFs. We further show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) channels the exogenous acetate to regulate the dynamic cancer epigenome and transcriptome, thereby facilitating cancer cell survival in an acidic microenvironment. Comparative H3K27ac ChIP-seq and RNA-seq analyses revealed alterations in polyamine homeostasis through regulation of SAT1 gene expression and enrichment of the SP1-responsive signature. We identified acetate/ACSS2-mediated acetylation of SP1 at the lysine 19 residue that increased SP1 protein stability and transcriptional activity. Genetic or pharmacologic inhibition of the ACSS2-SP1-SAT1 axis diminished the tumour burden in mouse models. These results reveal that the metabolic flexibility imparted by the stroma-derived acetate enabled cancer cell survival under acidosis via the ACSS2-SP1-SAT1 axis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Linhagem Celular Tumoral , Acetatos/farmacologia , Acetatos/metabolismo , Neoplasias Pancreáticas/genética , Poliaminas , Microambiente Tumoral
5.
Int J Biol Macromol ; 265(Pt 2): 131017, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513909

RESUMO

Water dropwort is favored by consumers for its unique flavor and medicinal value. Terpenoids were identified as the main volatile compounds related to its flavor. In this study, water dropwort was treated with different concentrations of exogenous methyl jasmonate (MeJA). The contents of volatile terpenoids were determined under various MeJA treatments. The results indicated that 0.1 mM of MeJA most effectively promoted the biosynthesis of flavor-related terpenoids in water dropwort. Terpinolene accounted the highest proportion among terpene compounds in water dropwort. The contents of jasmonates in water dropwort were also increased after exogenous MeJA treatments. Transcriptome analysis indicated that DEGs involved in the terpenoid biosynthesis pathway were upregulated. The TPS family was identified from water dropwort, and the expression levels of Oj0473630, Oj0287510 and Oj0240400 genes in TPS-b subfamily were consistent with the changes of terpene contents under MeJA treatments. Oj0473630 was cloned from the water dropwort and designated as OjTPS3, which is predicted to be related to the biosynthesis of terpinolene in water dropwort. Subcellular localization indicated that OjTPS3 protein was localized in chloroplast. Protein purification and enzyme activity of OjTPS3 protein were conducted. The results showed that the purified OjTPS3 protein catalyzed the biosynthesis of terpinolene by using geranyl diphosphate (GPP) as substrate in vitro. This study will facilitate to further understand the molecular mechanism of terpenoid biosynthesis and provide a strategy to improve the flavor of water dropwort.


Assuntos
Ciclopentanos , Oenanthe , Oxilipinas , Terpenos , Terpenos/metabolismo , Oenanthe/metabolismo , Monoterpenos Cicloexânicos , Acetatos/farmacologia
6.
Reprod Domest Anim ; 59(4): e14555, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38546114

RESUMO

Most of the northern hemisphere donkey breeds are faced with the risk of extinction, thus donkey reproduction is considered an emerging branch of theriogenology, and the management of artificial insemination and induction of ovulation is a crucial point in setting up preservation protocols. For four consecutive cycles, six jennies' ovarian activity was routinely monitored; an ultrasound examination was performed daily from the evidence of a follicle diameter ≥27 mm until ovulation. Upon reaching a follicular diameter ≥32 ± 2 mm (Hour 0), oestrous jennies were treated alternatively with 0.1 mg triptorelin acetate, sc, (TRIP), 0.4 mg/sc of buserelin acetate (BUS) or saline, sc, (CTRL) and examined ultrasonographically at Hours 14, 24, 38, 42, 48, 62 and every 24 h until ovulation. Induction of ovulation was considered successful if ovulation occurred from 24 to 48 h after treatment. 11/12 cycles resulted in ovulation for TRIP and 12/12 for BUS and CTRL groups, respectively. Mean ± SD ovulation time after treatment was 37.3 ± 8.3, 47.1 ± 21.0 and 66.8 ± 25.9 h for BUS, TRIP and CTRL, respectively (p = .0032). Ovulation rates between h24 and h48 were 10/12 (83.3%) for both TRIP/BUS and 2/12 (16.7%) for CTRL, respectively (p = .003). Buserelin and triptorelin-treated jennies had a 25 times higher probability to ovulate between Hours 24 and 48 than controls (p = .003), while there were no jenny and cycle effects on the ovulatory rate. The results of this study show how triptorelin successfully induced ovulation in jennies, like other GnRH analogues previously evaluated.


Assuntos
Equidae , Pamoato de Triptorrelina , Feminino , Animais , Pamoato de Triptorrelina/farmacologia , Ovulação , Busserrelina/farmacologia , Indução da Ovulação/veterinária , Indução da Ovulação/métodos , Acetatos/farmacologia , Hormônio Liberador de Gonadotropina/farmacologia
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474055

RESUMO

Angiotensin-converting enzyme (ACE) plays a crucial role in the pathogenesis of hypertension. Piper sarmentosum Roxb., an herb known for its antihypertensive effect, lacks a comprehensive understanding of the mechanism underlying its antihypertensive action. This study aimed to elucidate the antihypertensive mechanism of aqueous extract of P. sarmentosum leaves (AEPS) via its modulation of the ACE pathway in phorbol 12-myristate-13-acetate (PMA)-induced human umbilical vein endothelial cells (HUVECs). HUVECs were divided into five groups: control, treatment with 200 µg/mL AEPS, induction 200 nM PMA, concomitant treatment with 200 nM PMA and 200 µg/mL AEPS, and treatment with 200 nM PMA and 0.06 µM captopril. Subsequently, ACE mRNA expression, protein level and activity, angiotensin II (Ang II) levels, and angiotensin II type 1 receptor (AT1R) and angiotensin II type 2 receptor (AT2R) mRNA expression in HUVECs were determined. AEPS successfully inhibited ACE mRNA expression, protein and activity, and angiotensin II levels in PMA-induced HUVECs. Additionally, AT1R expression was downregulated, whereas AT2R expression was upregulated. In conclusion, AEPS reduces the levels of ACE mRNA, protein and activity, Ang II, and AT1R expression in PMA-induced HUVECs. Thus, AEPS has the potential to be developed as an ACE inhibitor in the future.


Assuntos
Forbóis , Piper , Humanos , Anti-Hipertensivos/farmacologia , Miristatos/metabolismo , Miristatos/farmacologia , Angiotensina II/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Peptidil Dipeptidase A/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , RNA Mensageiro/metabolismo , Acetatos/farmacologia , Forbóis/metabolismo , Forbóis/farmacologia
8.
Exp Parasitol ; 258: 108720, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367945

RESUMO

Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.


Assuntos
Probióticos , Toxocara canis , Toxocaríase , Animais , Humanos , Lactobacillus acidophilus/metabolismo , Peróxido de Hidrogênio/farmacologia , Toxocaríase/parasitologia , Larva , Acetatos/metabolismo , Acetatos/farmacologia
9.
J Pharm Pharmacol ; 76(3): 269-282, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38241189

RESUMO

OBJECTIVE: The goal of the study is to examine the impact on the malignant biological behaviors of non-small cell lung cancer (NSCLC) of a novel coumarin derivative, ethyl 2,2-difluoro-2-(2-oxo-2H-chromen-3-yl) acetate (C2F). It also aims to define its underlying mechanism. METHODS: NSCLC cell lines and xenograft nude mice model were conducted to explore the anti-NSCLC effects of C2F in vitro and in vivo. Then, network pharmacology analysis and molecular docking were applied to estimate the possible targets of C2F in NSCLC. Finally, the underlying mechanism of C2F against NSCLC cellular proliferation and tumor development was confirmed using inhibitors or activators of the PI3K/AKT signaling pathway. RESULTS: Our results showed that C2F was able to inhibit proliferation, migration, and invasion of NSCLC cell lines, induce cell cycle arrest and apoptosis in vitro, and prevent tumor growth in vivo. In addition, the estimated glomerular filtration rate and its downstream pathway (PI3K/AKT/mTOR) were found to be critical for the anti-NSCLC activity of C2F. CONCLUSIONS: C2F inhibits malignant biological behaviors of NSCLC by suppressing EGFR/PI3K/AKT/mTOR signaling pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Simulação de Acoplamento Molecular , Proliferação de Células , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Acetatos/farmacologia , Linhagem Celular Tumoral
10.
Inflammopharmacology ; 32(2): 1519-1529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227096

RESUMO

AIMS: Putative beneficial effects of neuropeptide W (NPW) in the early phase of gastric ulcer healing process and the involvement of cyclooxygenase (COX) enzymes were investigated in an acetic acid-induced gastric ulcer model. MAIN METHODS: In anesthetized male Sprague-Dawley rats, acetic acid was applied surgically on the serosa and then a COX-inhibitor (COX-2-selective NS-398, COX-1-selective ketorolac, or non-selective indomethacin; 2 mg/kg/day, 3 mg/kg/day or 5 mg/kg/day; respectively) or saline was injected intraperitoneally. One h after ulcer induction, omeprazole (20 mg/kg/day), NPW (0.1 µg/kg/day) or saline was intraperitoneally administered. Injections of NPW, COX-inhibitors, omeprazole or saline were continued for the following 2 days until rats were decapitated at the end of the third day. KEY FINDINGS: NPW treatment depressed gastric prostaglandin (PG) I2 level, but not PGE2 level. Similar to omeprazole, NPW treatment significantly reduced gastric and serum tumor necrosis factor-alpha and interleukin-1 beta levels and depressed the upregulation of nuclear factor kappa B (NF-κB) and COX-2 expressions due to ulcer. In parallel with the histopathological findings, treatment with NPW suppressed ulcer-induced increases in myeloperoxidase activity and malondialdehyde level and replenished glutathione level. However, the inhibitory effect of NPW on myeloperoxidase activity and NPW-induced increase in glutathione were not observed in the presence of COX-1 inhibitor ketorolac or the non-selective COX-inhibitor indomethacin. SIGNIFICANCE: In conclusion, NPW facilitated the healing of gastric injury in rats via the inhibition of pro-inflammatory cytokine production, oxidative stress and neutrophil infiltration as well as the downregulation of COX-2 protein and NF-κB gene expressions.


Assuntos
Neuropeptídeos , Transdução de Sinais , Úlcera Gástrica , Animais , Masculino , Ratos , Acetatos/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/uso terapêutico , Mucosa Gástrica , Glutationa/metabolismo , Indometacina/uso terapêutico , Cetorolaco/efeitos adversos , Neuropeptídeos/uso terapêutico , NF-kappa B/metabolismo , Omeprazol/farmacologia , Omeprazol/uso terapêutico , Peroxidase/metabolismo , Ratos Sprague-Dawley , Úlcera Gástrica/tratamento farmacológico , Úlcera/metabolismo , Úlcera/patologia
11.
Sci Rep ; 14(1): 620, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182773

RESUMO

Salinity stress has detrimental effects on various aspects of plant development. However, our understanding of strategies to mitigate these effects in crop plants remains limited. Recent research has shed light on the potential of sodium acetate as a mitigating component against salinity stress in several plant species. Here, we show the role of acetate sodium in counteracting the adverse effects on oat (Avena sativa) plants subjected to NaCl-induced salinity stress, including its impact on plant morphology, photosynthetic parameters, and gene expression related to photosynthesis and antioxidant capacity, ultimately leading to osmoprotection. The five-week experiment involved subjecting oat plants to four different conditions: water, salt (NaCl), sodium acetate, and a combination of salt and sodium acetate. The presence of NaCl significantly inhibited plant growth and root elongation, disrupted chlorophylls and carotenoids content, impaired chlorophyll fluorescence, and down-regulated genes associated with the plant antioxidant defense system. Furthermore, our findings reveal that when stressed plants were treated with sodium acetate, it partially reversed these adverse effects across all analyzed parameters. This reversal was particularly evident in the increased content of proline, thereby ensuring osmoprotection for oat plants, even under stressful conditions. These results provide compelling evidence regarding the positive impact of sodium acetate on various plant development parameters, with a particular focus on the enhancement of photosynthetic activity.


Assuntos
Antioxidantes , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Antioxidantes/farmacologia , Avena , Cloreto de Sódio/farmacologia , Acetato de Sódio , Acetatos/farmacologia , Estresse Salino
12.
Fungal Genet Biol ; 170: 103864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199492

RESUMO

Methyl jasmonate (MeJA)-regulated postharvest quality retention of Agaricus bisporus fruiting bodies is associated with arginine catabolism. However, the mechanism of MeJA-regulated arginine catabolism in edible mushrooms is still unclear. This study aimed to investigate the regulatory modes of MeJA on the expression of arginine catabolism-related genes and proteins in intact and different tissues of A. bisporus mushrooms during storage. Results showed that exogenous MeJA treatment activated endogenous JA biosynthesis in A. bisporus mushrooms, and differentially and tissue-specifically regulated the expression of arginine catabolism-related genes (AbARG, AbODC, AbSPE-SDH, AbSPDS, AbSAMDC, and AbASL) and proteins (AbARG, AbSPE-SDH, AbASL, and AbASS). MeJA caused no significant change in AbASS expression but resulted in a dramatic increase in AbASS protein level. Neither the expression of the AbSAMS gene nor the AbSAMS protein was conspicuously altered upon MeJA treatment. Additionally, MeJA reduced the contents of arginine and ornithine and induced the accumulation of free putrescine and spermidine, which was closely correlated with MeJA-regulated arginine catabolism-related genes and proteins. Hence, the results suggested that the differential and tissue-specific regulation of arginine catabolism-related genes and proteins by MeJA contributed to their selective involvement in the postharvest continuing development and quality retention of button mushrooms.


Assuntos
Agaricus , Agaricus/genética , Acetatos/farmacologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia
13.
Ecotoxicol Environ Saf ; 271: 115886, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211515

RESUMO

Natural aquatic environments have a heterogeneous composition; therefore, simultaneous exposure to multiple contaminants is relevant and more realistic when assessing exposure and toxicity. This study examines the combinatorial effects of two compounds found ubiquitously in drinking water across the United States: glyphosate and lead acetate. Zebrafish (Danio rerio) embryos were used as a model for investigating developmental delays following controlled exposures. Six different environmentally relevant exposure concentrations of glyphosate, ranging from 0.001 to 10 ppm, and lead acetate, ranging from 0.5 to 4 ppm, were applied first as single exposures and then as co-exposures. The sublethal endpoints of hatching and coagulation were quantified to determine potencies. Results indicate that higher concentrations of the individual chemicals correlate with later hatching with correlation coefficients of 0.71 and 0.40 for glyphosate and lead acetate respectively, while the co-exposure at lower concentrations induced earlier hatching with a correlation coefficient 0.74. In addition, increased levels of coagulation and glutathione reductase activity were observed following co-exposure, as compared to the individual exposures, suggesting potential toxicological interactions. These results support the need for further work assessing the combined potencies of aquatic contaminants rather than individual exposures.


Assuntos
60658 , Poluentes Químicos da Água , Animais , Peixe-Zebra , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Chumbo/toxicidade , Acetatos/farmacologia
14.
Int J Mol Sci ; 25(2)2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38255839

RESUMO

Methyl jasmonate (MJA), a signaling molecule in stress pathways, can be used to induce secondary metabolite synthesis in plants. The present study examines its effects on the growth of Salvia viridis hairy roots, and the accumulation of bioactive compounds, and correlates it with the expression of genes involved in the phenylpropanoid pathway. To our knowledge, this study represents the first exploration of elicitation in S. viridis culture and the first comprehensive analysis of MJA's influence on such a wide array of genes within the polyphenol metabolic pathway in the Salvia genus. Plants were treated with 50 and 100 µM MJA, and samples were collected at intervals of one, three, five, and seven days post-elicitation. HPLC analysis revealed that MJA stimulated the accumulation of all tested compounds, with a 30% increase (38.65 mg/g dry weight) in total polyphenol content (TPC) on day five. Quantitative real-time polymerase chain reaction (RT-PCR) analysis demonstrated a significant increase in the expression of the phenylpropanoid pathway genes-TAT (tyrosine aminotransferase), HPPR (4-hydroxyphenylpyruvate reductase), PAL (phenylalanine ammonia-lyase), C4H (cinnamic acid 4-hydroxylase), 4CL (4-coumarate-CoA ligase), and RAS (rosmarinic acid synthase)-following MJA treatment. For the majority of the genes, this increase was observed after the first day of treatment. Importantly, our present results confirm strong correlations of the analyzed gene expression with polyphenol biosynthesis. These findings support the notion that hairy roots provide a promising biotechnological framework for augmenting polyphenol production. Additionally, the combination of elicitor treatment and transgenic technology emerges as a viable strategy to enhance the biosynthesis of these valuable metabolites.


Assuntos
Acetatos , Biotecnologia , Ciclopentanos , Oxilipinas , Acetatos/farmacologia , Cromatografia Líquida de Alta Pressão , Expressão Gênica
15.
J Am Heart Assoc ; 13(3): e031028, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38293916

RESUMO

BACKGROUND: Small conductance calcium-activated potassium (SK) channels are largely responsible for endothelium-dependent coronary arteriolar relaxation. Endothelial SK channels are downregulated by the reduced form of nicotinamide adenine dinucleotide (NADH), which is increased in the setting of diabetes, yet the mechanisms of these changes are unclear. PKC (protein kinase C) is an important mediator of diabetes-induced coronary endothelial dysfunction. Thus, we aimed to determine whether NADH signaling downregulates endothelial SK channel function via PKC. METHODS AND RESULTS: SK channel currents of human coronary artery endothelial cells were measured by whole cell patch clamp method in the presence/absence of NADH, PKC activator phorbol 12-myristate 13-acetate, PKC inhibitors, or endothelial PKCα/PKCß knockdown by using small interfering RNA. Human coronary arteriolar reactivity in response to the selective SK activator NS309 was measured by vessel myography in the presence of NADH and PKCß inhibitor LY333531. NADH (30-300 µmol/L) or PKC activator phorbol 12-myristate 13-acetate (30-300 nmol/L) reduced endothelial SK current density, whereas the selective PKCᵦ inhibitor LY333531 significantly reversed the NADH-induced SK channel inhibition. PKCß small interfering RNA, but not PKCα small interfering RNA, significantly prevented the NADH- and phorbol 12-myristate 13-acetate-induced SK inhibition. Incubation of human coronary artery endothelial cells with NADH significantly increased endothelial PKC activity and PKCß expression and activation. Treating vessels with NADH decreased coronary arteriolar relaxation in response to the selective SK activator NS309, and this inhibitive effect was blocked by coadministration with PKCß inhibitor LY333531. CONCLUSIONS: NADH-induced inhibition of endothelial SK channel function is mediated via PKCß. These findings may provide insight into novel therapeutic strategies to preserve coronary microvascular function in patients with metabolic syndrome and coronary disease.


Assuntos
Diabetes Mellitus , Forbóis , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Proteína Quinase C beta/metabolismo , Proteína Quinase C beta/farmacologia , Células Endoteliais/metabolismo , Miristatos/metabolismo , Miristatos/farmacologia , NAD/metabolismo , Vasodilatação/fisiologia , Diabetes Mellitus/metabolismo , Endotélio Vascular/metabolismo , RNA Interferente Pequeno/metabolismo , Acetatos/metabolismo , Acetatos/farmacologia , Forbóis/metabolismo , Forbóis/farmacologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38199487

RESUMO

Short-chain fatty acids (SCFAs) are produced in the colon following bacterial fermentation of dietary fiber and are important microbiota-gut-brain messengers. However, their mechanistic role in modulating psychobiological processes that underlie the development of stress- and anxiety-related disorders is scarcely studied in humans. We have previously shown that colonic administration of a SCFA mixture (acetate, propionate, butyrate) lowers the cortisol response to stress in healthy participants, but does not impact fear conditioning and extinction. To disentangle the effects of the three main SCFAs, we examined whether butyrate alone would similarly modulate these psychobiological responses in a randomized, triple-blind, placebo-controlled intervention study in 71 healthy male participants (Mage = 25.2, MBMI = 22.7 [n = 35 butyrate group, n = 36 placebo group]). Colon-delivery capsules with pH-dependent coating were used to administer 5.28 g of butyrate or placebo daily for one week. Butyrate administration significantly increased serum butyrate concentrations without modulating serum acetate or propionate, nor fecal SCFAs. Butyrate administration also significantly modulated fear memory at the subjective but not physiological levels. Contrary to expectations, no changes in subjective nor neuroendocrine responses to acute stress were evident between the treatment groups from pre- to post-intervention. We conclude that colonic butyrate administration alone is not sufficient to modulate psychobiological stress responses, unlike administration of a SCFA mixture. The influence of colonic and systemic butyrate on fear memory and the persistence of fear extinction should be further systematically investigated in future studies.


Assuntos
Butiratos , Propionatos , Humanos , Masculino , Butiratos/farmacologia , Propionatos/farmacologia , Extinção Psicológica , Medo , Ácidos Graxos Voláteis , Acetatos/farmacologia , Colo/microbiologia
17.
J Dairy Sci ; 107(2): 840-856, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37730175

RESUMO

The objective of this study was to evaluate the effects of cashew nut shell extract (CNSE) and monensin on ruminal in vitro fermentation, CH4 production, and ruminal bacterial community structure. Treatments were as follows: control (CON, basal diet without additives); 2.5 µM monensin (MON); 0.1 mg CNSE granule/g DM (CNSE100); and 0.2 mg CNSE granule/g DM (CNSE200). Each treatment was incubated with 52 mL of buffered ruminal content and 500 mg of total mixed ration for 24 h using serum vials. The experiment was performed as a complete randomized block design with 3 runs. Run was used as a blocking factor. Each treatment had 5 replicates, in which 2 were used to determine nutrient degradability, and 3 were used to determine pH, NH3-N, volatile fatty acids, lactate, total gas, CH4 production, and bacterial community composition. Treatment responses for all data, excluding bacterial abundance, were analyzed with the GLIMMIX procedure of SAS v9.4. Treatment responses for bacterial community structure were analyzed with a PERMANOVA test run with the R package vegan. Orthogonal contrasts were used to test the effects of (1) additive inclusion (ADD: CON vs. MON, CNSE100, and CNSE200); (2) additive type (MCN: MON vs. CNSE100 and CNSE200); and (3) CNSE dose (DOS: CNSE100 vs. CNSE200). We observed that pH, acetate, and acetate:propionate ratio in the CNSE100 treatment were lower compared with CNSE200, and propionate in the CNSE100 treatment was greater compared with CNSE200. Compared with MON, CNSE treatments tended to decrease total lactate concentration. Total gas production of CON was greater by 2.63% compared with all treatments, and total CH4 production was reduced by 10.64% in both CNSE treatments compared with MON. Also, compared with MON, in vitro dry matter degradabilities in CNSE treatments were lower. No effects were observed for NH3-N or in vitro neutral detergent fiber degradability. Finally, the relative abundances of Prevotella, Treponema, and Schwartzia were lower, whereas the relative abundances of Butyrivibrio and Succinivibrio were greater in all treatments compared with CON. Overall, the inclusion of CNSE decreased CH4 production compared with MON, making CNSE a possible CH4 mitigation additive in dairy cattle diets.


Assuntos
Anacardium , Monensin , Bovinos , Feminino , Animais , Monensin/farmacologia , Monensin/metabolismo , Lactação , Propionatos/metabolismo , Fermentação , Nozes , Digestão , Dieta/veterinária , Bactérias , Acetatos/farmacologia , Metano/metabolismo , Lactatos/metabolismo , Extratos Vegetais/farmacologia , Rúmen/metabolismo , Ração Animal/análise
18.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 357-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37899710

RESUMO

This experiment was conducted to investigate the effects of a high-fibre diet on growth performance, nutrients digestibility, intestinal health, and intestinal microbiota composition of growing pigs. Twelve healthy "Duroc × Landrace × Yorkshire" castrates (49 ± 1.35 kg) were randomly divided into two groups with six replicates and one pig per replicate. The two diet treatments were fed the basal diet (CON) based on corn and soybean meal and high fibre diet (HF) respectively. The nutritional levels of the two treatments were the same. The experiment lasted 28 days. The results showed that the addition of 16% wheat bran fibre to the diet of growing pigs did not affect growth performance (p > 0.05). Compared with the CON, contents of isobutyric and butyric acid, GSH-PX and T-AOC in serum were increased in the HF. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05), the contents of GSH-PX and T-AOC in serum. It decreased the gross energy digestibility and acetic acid content in feces of growing pigs (p < 0.05). Compared with the CON, the Shannon, and Chao1 indexes of the HF were increased (p < 0.05). At the phylum level, the abundance of g_Lactobacillus increased in the HF (p < 0.05). Correlation analysis showed that a total of 18 microbial genera were correlated with antioxidant capacity and volatile fatty acid levels (p < 0.05). In summary, this study showed that adding 16% wheat bran to the diet of growing pigs had no effect on growth performance but helped to improve the richness and stability of intestinal microbiota, promote posterior intestinal fermentation and increase serum antioxidant capacity.


Assuntos
Antioxidantes , Microbiota , Suínos , Animais , Antioxidantes/farmacologia , Digestão/fisiologia , Dieta/veterinária , Fibras na Dieta/análise , Acetatos/farmacologia , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal
19.
J Microbiol Biotechnol ; 34(1): 47-55, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38044707

RESUMO

Streptococcus pneumoniae (pneumococcus) is an opportunistic pathogen that can cause severe infectious diseases such as pneumonia, meningitis, and otitis media. Despite the availability of antibiotics and pneumococcal vaccines against some invasive serotypes, pneumococcal infection remains a tremendous clinical challenge due to the increasing frequency of infection by antimicrobial resistant, nonencapsulated, and/or non-vaccine serotype strains. Short-chain fatty acids (SCFAs), which are produced at various mucosal sites in the body, have potent antimicrobial activity, including inhibition of pathogen growth and/or bacterial biofilm formation. In this study, we investigated the antimicrobial activity of SCFAs (acetate, propionate, and butyrate) against various serotypes pneumococci. Propionate generally inhibited the growth of S. pneumoniae serotypes included in the pneumococcal conjugate vaccine (PCV) 13, except for serotypes 3 and 7F, though butyrate and acetate showed no or low inhibition, depending on the serotypes. Of note, butyrate showed strong inhibition against serotype 3, the most prevalent invasive strain since the introduction of the PCV. No SCFAs showed inhibitory effects against serotype 7F. Remarkably, the nonencapsulated pneumococcal strain had more sensitivity to SCFAs than encapsulated parental strains. Taken together, these results suggest that propionate showing the most potent inhibition of pneumococcal growth may be used as an alternative treatment for pneumococcal infection, and that butyrate could be used against serotype 3, which is becoming a serious threat.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Lactente , Sorogrupo , Propionatos/farmacologia , Infecções Pneumocócicas/microbiologia , Infecções Pneumocócicas/prevenção & controle , Antibacterianos/farmacologia , Vacinas Pneumocócicas/farmacologia , Ácidos Graxos Voláteis , Butiratos/farmacologia , Vacinas Conjugadas , Acetatos/farmacologia , Sorotipagem
20.
J Ethnopharmacol ; 321: 117542, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056537

RESUMO

ETHNOPHARMACOLOGICAL IMPORTANCE: Uncaria tomentosa Willd. DC., is used in the Amazonian region of South America, wherein ethnic groups use the plant to treat diseases, including gastric disorders. However, despite its widespread popular use, this species has yet to be assessed for its anti-ulcer effects. AIM OF THE STUDY: In this study, we aimed to evaluate the in vivo gastroprotective and gastric healing activities of an aqueous extract of the bark of Uncaria tomentosa (AEUt) and sought to gain an understanding of the pharmacological mechanisms underlying these biological effects. MATERIALS AND METHODS: To verify the gastroprotective properties rats were treated with AEUt (30, 60, or 120 mg/kg) prior to inducing gastric ulceration with ethanol or piroxicam. Additionally, the involvement of nitric oxide, non-protein sulfhydryl compounds (NP-SH), α-2 adrenergic receptors, and prostaglandins was investigated. Furthermore, a pylorus ligature model was employed to investigate the antisecretory activity of AEUt. The gastric healing effects of AEUt (60 mg/kg) were examined in rats in which ulceration had been induced with 80% acetic acid, whereas the quality of healing was evaluated in mice with interleukin-induced recurrent ulcers. We also evaluated the in vivo thickness of the gastric wall using ultrasonography. Moreover, the levels of reduced glutathione (GSH) and malondialdehyde (MDA) were evaluated in ulcerated mucosa, and we determined the activities of the enzymes myeloperoxidase (MPO), N-acetyl-ß-D-glycosaminidase, superoxide dismutase, catalase, and glutathione S-transferase. In addition, we assessed the effects of AEUt on cell viability and subjected the AEUt to phytochemical analyses. RESULTS: Administration of the AEUt (60 or 120 mg/kg) prevented ethanol- and piroxicam-induced ulceration, which was also confirmed histologically. Moreover, we observed that pre-treatment with NEM and indomethacin abolished the gastroprotective effects of AEUt, thereby indicating the involvement of NP-SH and prostaglandins in these protective effects. In addition, we found that the administration of AEUt had no appreciable effects on the volume, acidity, or peptic activity of gastric juice. Furthermore, the AEUt (60 mg/kg) accelerated the gastric healing of acetic acid-induced ulcers by 46.2% and ultrasonographic findings revealed a reduction in the gastric wall thickness in this group. The gastric healing effect of AEUt was also accompanied by a reduction in MPO activity. The AEUt (60 mg/kg) also minimized ulcer recurrence in mice exposed to IL-1ß and was associated with the maintenance of GSH levels and a reduction in MDA contents. We deduce that the biological effects of AEUt could be associated with the activities of polyphenols and the alkaloids isomitraphylline and mitraphylline, identified as predominant constituents of the AEUt. Furthermore, we found no evidence to indicate that AEUt would have any cytotoxic effects. CONCLUSION: Collectively, our findings provide compelling evidence indicating the therapeutic efficacy of U. tomentosa. Our data indicate that compounds in AEUt confer gastroprotection and that this preventive effect of AEUt was accompanied by gastric healing and a reduction in gastric ulcer recurrence. Moreover, we provide evidence to indicate that the gastroprotective and gastric healing effects involve the antioxidant system and anti-inflammatory responses that contribute to preserving the gastric mucosa.


Assuntos
Antiulcerosos , Unha-de-Gato , Plantas Medicinais , Úlcera Gástrica , Ratos , Camundongos , Animais , Piroxicam/efeitos adversos , Fitoterapia , Úlcera/tratamento farmacológico , Casca de Planta , Ratos Wistar , Antiulcerosos/farmacologia , Antiulcerosos/uso terapêutico , Antiulcerosos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Mucosa Gástrica , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/prevenção & controle , Etanol/farmacologia , Acetatos/farmacologia , Prostaglandinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...